Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biomolecules ; 12(7)2022 07 05.
Article in English | MEDLINE | ID: covidwho-1917277

ABSTRACT

Saquinavir was the first protease inhibitor developed for HIV therapy, and it changed the standard of treatment for this disease to a combination of drugs that ultimately led to increased survival of this otherwise deadly condition. Inhibiting the HIV protease impedes the virus from maturing and replicating. With this in mind, since the start of the COVID-19 outbreak, the research for already approved drugs (mainly antivirals) to repurpose for treatment of this disease has increased. Among the drugs tested, saquinavir showed promise in silico and in vitro in the inhibition of the SARS-CoV-2 main protease (3CLpro). Another field for saquinavir repurposing has been in anticancer treatment, in which it has shown effects in vitro and in vivo in several types of cancer, from Kaposi carcinoma to neuroblastoma, demonstrating cytotoxicity, apoptosis, inhibition of cell invasion, and improvement of radiosensibility of cancer cells. Despite the lack of follow-up in clinical trials for cancer use, there has been a renewed interest in this drug recently due to COVID-19, which shows similar pharmacological pathways and has developed superior in silico models that can be translated to oncologic research. This could help further testing and future approval of saquinavir repurposing for cancer treatment.


Subject(s)
COVID-19 Drug Treatment , HIV Infections , HIV Protease Inhibitors , Neoplasms , HIV Infections/drug therapy , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/therapeutic use , Humans , Neoplasms/drug therapy , SARS-CoV-2 , Saquinavir/pharmacology , Saquinavir/therapeutic use
2.
Medicine (Baltimore) ; 100(31): e26787, 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1354339

ABSTRACT

BACKGROUND: Lopinavir, ritonavir, atazanavir, and saquinavir had been reportedly used or suggested for coronavirus disease 2019 (COVID-19) treatment. They may cause electrocardiography changes. We aim to evaluate risk of PR prolongation, QRS widening, and QT prolongation from lopinavir, ritonavir, atazanavir, and saquinavir. METHODS: In accordance with preferred reporting items for systematic reviews and meta-analyses guidelines, our search was conducted in PubMed Central, PubMed, EBSCOhost, and ProQuest from inception to June 25, 2020. Titles and abstracts were reviewed for relevance. Cochrane Risk of Bias Tool 2.0 and Downs and Black criteria was used to evaluate quality of studies. RESULTS: We retrieved 9 articles. Most randomized controlled trials have low risk of biases while all quasi-experimental studies have a positive rating. Four studies reporting PR prolongation however only 2 studies with PR interval >200 ms. One of which, reported its association after treatment with ritonavir-boosted saquinavir treatment while another, during treatment with ritonavir-boosted atazanavir. No study reported QRS widening >120 ms with treatment. Four studies reporting QT prolongation, with only one study reaching QT interval >450 ms after ritonavir-boosted saquinavir treatment on healthy patients. There is only one study on COVID-19 patients reporting QT prolongation in 1 out of 95 patients after ritonavir-boosted lopinavir treatment. CONCLUSION: Limited evidence suggests that lopinavir, ritonavir, atazanavir, and saquinavir could cause PR prolongation, QRS widening, and QT prolongation. Further trials with closer monitoring and assessment of electrocardiography are needed to ascertain usage safety of antivirals in COVID-19 era.


Subject(s)
Atazanavir Sulfate/adverse effects , Long QT Syndrome/etiology , Lopinavir/adverse effects , Ritonavir/adverse effects , Saquinavir/adverse effects , Adult , Atazanavir Sulfate/therapeutic use , Cytochrome P-450 CYP3A Inhibitors/adverse effects , Drug Therapy, Combination/methods , Drug Therapy, Combination/standards , Electrocardiography/methods , Humans , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Saquinavir/therapeutic use
3.
Travel Med Infect Dis ; 35: 101646, 2020.
Article in English | MEDLINE | ID: covidwho-47222

ABSTRACT

BACKGROUND: The COVID-19 has now been declared a global pandemic by the World Health Organization. There is an emergent need to search for possible medications. METHOD: Utilization of the available sequence information, homology modeling, and in slico docking a number of available medications might prove to be effective in inhibiting the SARS-CoV-2 two main drug targets, the spike glycoprotein, and the 3CL protease. RESULTS: Several compounds were determined from the in silico docking models that might prove to be effective inhibitors for SARS-CoV-2. Several antiviral medications: Zanamivir, Indinavir, Saquinavir, and Remdesivir show potential as and 3CLPRO main proteinase inhibitors and as a treatment for COVID-19. CONCLUSION: Zanamivir, Indinavir, Saquinavir, and Remdesivir are among the exciting hits on the 3CLPRO main proteinase. It is also exciting to uncover that Flavin Adenine Dinucleotide (FAD) Adeflavin, B2 deficiency medicine, and Coenzyme A, a coenzyme, may also be potentially used for the treatment of SARS-CoV-2 infections. The use of these off-label medications may be beneficial in the treatment of the COVID-19.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Drug Discovery/methods , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/therapeutic use , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/therapeutic use , Humans , Indinavir/chemistry , Indinavir/therapeutic use , Molecular Docking Simulation , Off-Label Use , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Saquinavir/chemistry , Saquinavir/therapeutic use , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Structural Homology, Protein , Viral Nonstructural Proteins/antagonists & inhibitors , Zanamivir/chemistry , Zanamivir/therapeutic use , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL